亚洲金属百科
专业的金属知识站点
  • 硅的制取及硅片的制备

 
  • 不同形态不同纯度的制取方式各有不同,具体方法如下:
  • 无定型硅可以通过还原二氧化硅的方式制得。实验室里可用镁粉在赤热下还原粉状二氧化硅,用稀酸洗去生成的氧化镁和镁粉,再用氢氟酸洗去未作用的二氧化硅,即得单质硅。这种方法制得的都是不够纯净的无定形硅,为棕黑色粉末。
  • 晶体硅可以用碳在电炉中还原二氧化硅制得。工业上生产硅是在电弧炉中还原硅石(SiO2含量大于99%)。使用的还原剂为石油焦和木炭等。使用直流电弧炉时,能全部用石油焦代替木炭。石油焦的灰分低(0.3%~0.8%),采用质量高的硅石(SiO2大于99%),可直接炼出制造硅钢片用的高质量硅。
  • 电子工业中用的高纯硅则是用氢气还原三氯氢硅或四氯化硅而制得。高纯的半导体硅可在1200℃的热硅棒上用氢气还原高纯的三氯氢硅SiHCl3或SiCl4制得。
  • 超纯的单晶硅可通过直拉法或区域熔炼法等制备。
  • 单晶硅的生产工艺
  • 直拉悬浮法生产单晶硅单晶硅是非常重要的晶体硅材料,根据晶体生长方式的不同,可以分为区熔单晶硅和直拉单晶硅。区熔单晶硅是利用悬浮区域熔炼(float zone)的方法制备的,所以又称FZ硅单晶。直拉单晶硅是利用切氏法制备单晶硅,称为CZ单晶硅。这两种单晶硅具有不同的特性和不同的器件应用领域:区熔单晶硅主要应用于大功率器件方面,只占单晶硅市场很小的一部分,在国际市场上约占10%左右,而直拉单晶硅主要应用于微电子集成电路和太阳能电池方面,是单晶硅的主题。与区熔单晶硅相比,直拉单晶硅的制造成本相对较低,机械强度较高,易制备大直径单晶,所以,太阳电池领域主要应用直拉单晶硅,而不是区熔单晶硅。
  • 单晶炉直拉法生长晶体的技术是由波兰的J.Czochralski在1971年发明的,所以又称切氏法。1950年Teal等将该技术用于生长半导体锗单晶,然后又利用这种方法生长直拉单晶硅,在此基础上,Dash提出了直拉单晶硅生长的“缩颈”技术,G.Ziegler提出快速引颈生长细颈的技术,构成了现代制备大直径无位错直拉单晶硅的基本方法。单晶硅的直拉法生长已经是单晶硅制备的主要技术,也是太阳电池用单晶硅的主要制备方法。
  • 直拉单晶硅的制备工艺一般包括多晶硅的装料和熔化,种晶,缩颈,放肩,等径和收尾等。
  • 直拉单晶硅的制备工艺流程
  • 多晶硅的生产工艺
  • 直到20世纪90年代,太阳能光伏工业还是主要建立在单晶硅的基础上。虽然单晶硅太阳电池成本在不断下降,但是与常规电力相比还是缺乏竞争力,因此,不断降低成本是光伏界追求的目标。自20世纪80年代铸造多晶硅发明和应用以来,增长迅速,80年代末期,它仅占太阳电池材料的10%左右,而至1996年底它已占整个太阳电池材料的36%,它以相对低成本,高效率的优势不断挤占单晶硅的市场,成为最具竞争力的太阳电池材料,21世纪初已占50%以上,成为最主要的太阳电池材料。
  • 多晶硅铸锭炉 太阳电池多晶硅锭市一中柱状晶,晶体生长方向垂直向上,是通过定向凝固(也称可控凝固,约束凝固)过程来实现,即在结晶过程中,通过控制温度场的变化,形成单方向热流(生长方向和热流方向相反),并要求液固界面处的温度梯度大于0,横向则要求无温度梯度,从而形成定向生长的柱状晶。实现多晶硅定向凝固生长的四种方法分别为布里曼法、热交换法、电磁铸锭法,浇铸法。目前企业最常用的方法是热交换法生产多晶硅。
  • 热交换法生产铸造多晶硅的具体工艺流程一般如下:装料→加热→化料→晶体生长→退火→冷却。
  • 非晶硅的生产工艺
  • 要获得非晶态,需要有高的冷却速率,而对冷却速率的具体要求随材料而定。硅要求有极高的冷却速率,用液态快速淬火的方法目前还无法得到非晶态。近年来,发展了许多种气相淀积非晶态硅膜的技术,其中包括真空蒸发、辉光放电、溅射及化学气相淀积等方法。一般所用的主要原料是单硅烷(SiH4)、二硅烷(Si2H6)、四氟化硅(SiF4)等,纯度要求很高。非晶硅膜的结构和性质与制备工艺的关系非常密切,目前认为以辉光放电法制备的非晶硅膜质量最好,设备也并不复杂。
  • 硅按不同的纯度可以分为冶金级硅(MG)、太阳能级硅(SG)和电子级硅(EG)。一般来说,经过浮选和磁选后的硅石(主要成分是SiO2)放在电弧炉里和焦炭生成冶金级硅,然后进一步提纯到更高级数的硅。目前处于世界主流的传统提纯工艺主要有两种:改良西门子法和硅烷法,它们统治了世界上绝大部分的多晶硅生产线,是多晶硅生产规模化的重要级数。在此主要介绍改良西门子法。改良西门子法是以HCl(或H2,Cl2)和冶金级工业硅为原料,在高温下合成为SiHCl3,然后通过精馏工艺,提纯得到高纯SiHCl3,最后用超高纯的氢气对SiHCl3进行还原,得到高纯多晶硅棒。主要工艺流程如图下图所示。
  • 纯硅的制备
  • 工艺主要包括:SiHCl3的合成、SiHCl3的提纯及SiHCl3还原制备高纯硅。
  • 硅片一般分为单晶硅片和多晶硅片,硅片的制备分为单晶硅,多晶硅的生产工艺以及加工工艺。
  • 硅片加工过程中包含的制造步骤,根据不同的硅片生产商有所变化。这里介绍的硅片加工主要包括开方,切片,清洗等工艺。常见单晶硅片,多晶硅片如下图所示。
  • 单晶硅和多晶硅
  • 单晶硅片和多晶硅片的加工过程中,腐蚀,清洗工艺几乎一样,不同点主要表现在前段工序。
  • (1)单晶硅片加工工艺
  • 单晶硅片加工工艺主要为:切断→外径滚圆→切片→倒角→研磨→腐蚀、清洗等。
  • ①切断:是指在晶体生长完成后, 沿垂直与晶体生长的方向切去晶体硅头尾无用的部分,即头部的籽晶和放肩部分以及尾部的收尾部分。通常利用外圆切割机进行切割,外圆切割机如图7-4 所示。 外圆切割机刀片边缘为金刚石涂层。这种切割机的刀片厚,速度快,操作方便;但是刀缝宽,浪费材料,而且硅片表面机械损伤严重。目前,也有使用带式切割机来割断晶体硅的,尤其适用于大直径的单晶硅。
  • ②外径滚圆:在直拉单晶硅中,由于晶体生长方时的热振动,热冲击等原因,晶体表面都不是非常平滑的,也就是说整根单晶硅的直径有一定偏差起伏;而且晶体生长完成后的单晶硅棒表面存在扁平的棱线,需要进一步加工,使得整根单晶硅棒的直径达到统一,以便于在后续的材料和加工工艺中操作。
  • ③切片:在单晶硅滚圆工序完成后,需要对单晶硅棒切片。太阳电池用单晶硅在切片时,对硅片的晶向,平行度和翘曲度等参数要求不高,只需对硅片的厚度进行控制。
  • ④倒角:将单晶硅棒切割成晶片,晶片锐利边需要休整成圆弧形,主要防止晶片边缘破裂及晶格缺陷产生。
  • ⑤研磨:切片后,在硅片的表面产生线痕,需要通过研磨除去切片所造成的锯痕及表面损伤层,有效改善单晶硅的翘曲度、平坦度与平行度,达到一个抛光处理的过程规格。
  • ⑥腐蚀,清洗:切片后,硅片表面有机械损伤层,近表面晶体的晶格不完整,而且硅片表面有金属粒子等杂质污染。因此,一般切片后,在制备太阳能电池前,需要对硅片进行化学腐蚀。 在单晶硅片加工过程中很多步骤需要用到清洗,这里的清洗主要是腐蚀后的最终清洗。清洗的目的在于清除晶片表面所有的污染源。常见清洗的方式主要是传统的RCA湿式化学清洗技术。
  • (2)多晶硅片加工工艺
  • 多晶硅片加工工艺主要为:开方→磨面→倒角→切片→腐蚀,清洗等。
  • ①开方 对于方形的晶体硅锭,在硅锭切断后,要进行切方块处理,即沿着硅锭的晶体生长的纵向方向,将硅锭切割成一定尺寸的长方形硅块。
  • ②磨面 在开方之后的硅块表面会产生线痕,需要通过研磨除去开方所造成的锯痕及表面损伤层,有效改善硅块的平坦度与平行度,达到一个抛光过程处理的规格。
  • ③倒角 将多晶硅切割成硅块后,硅块边角锐利部分需要倒角,修整成圆弧形,主要是防止切割时硅片的边缘破裂、崩边及晶格缺陷产生。 切片与后续的腐蚀、清洗工艺与单晶硅几乎一致,在此不再赘述。

1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
111
112
Cn
113
Uut
114
Fl
115
Uup
116
Lv
117
Uus
118
Uuo